The Cu ion is coordinated to the four N atoms of the macrocycle and a Cl⁻ ion to form a distorted square-pyramidal geometry. The cation possesses crystallographic twofold symmetry through the Cu—Cl bond. Both 1,3-diazacyclopentane ring moieties in [Cu(L)Cl]ClO₄ are situated in the same direction with respect to the coordination plane toward the apical Cl⁻ ligand while they are situated oppositely in square-planar [Ni(L)]Cl₂. The Cu and Ni complexes correspond to the *trans*-I and *trans*-III conformers, respectively (Thöm, Fox, Boeyens & Hancock, 1984).

Two pairs of the twofold-related N donors are disposed $[\pm 0.129 (8) \text{ Å}]$ on the opposite sides of their least-squares plane, showing a slight tetrahedral distortion. The Cu ion lies 0.316 (1) Å above this plane toward the Cl⁻ ion. The five-membered chelate ring assumes a half-chair form $[N-C-C-N 58 (1)^{\circ}]$. The six-membered chelate ring assumes a conformation intermediate between the normal and half-chair forms. The 1,3-diazacyclopentane ring moiety assumes an envelope form $[N-C-C-N 8.4 (9)^{\circ}]$ and is situated perpendicular to the basal coordination plane with a dihedral angle of $102 (1)^{\circ}$.

Cu—N(6)(tertiary) [2.043 (8) Å] is slightly longer than Cu—N(3)(secondary) [2.022 (8) Å]. These coordination bond distances are consistent with those of Cu complexes of the 14-membered macrocycle (Lee, Lee, Juang & Chung, 1985) and longer than those of [Ni(L)]Cl₂. The Cu—Cl bond distance, 2.483 (4) Å, is the typical value for Cu^{II} complexes. The average C—N distance involving coordinated tertiary N(6) (1.49 \pm 0.02 Å) is slightly shorter than that involving coordinated secondary N(3) $(1.53 \pm 0.02 \text{ Å})$. The Cl⁻ ligand makes a close contact with C(7) [3.348 (15) Å] which is shorter than the van der Waals contact of 3.5 Å (Bondi, 1964).

Crystal packing is shown in Fig. 2. The perchlorate anion is located on the twofold symmetry axis and statistically disordered in two positions with almost equal site occupancy. One O atom of the perchlorate ion may be involved in a hydrogen bond $[N(3)\cdots O(2), 3\cdot 09 (2), N(3)$ —H, $0\cdot 90 (2), H\cdots O(2), 2\cdot 24 (3)$ Å, N(3)—H $\cdots O(2), 159 (3)^{\circ}]$ although disordering phenomena may diminish this effect. The Cl⁻ ligand is 4.087 (2) Å above the Cu ion of the cation related by one unit-cell translation along the *c* axis.

This work was supported by the Basic Research Institute Program (1988), Ministry of Education, Republic of Korea.

References

- BONDI, A. (1964). J. Phys. Chem. 68, 441-451.
- JOHNSON, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- LEE, T.-J., LEE, T.-Y., JUANG, W.-B. & CHUNG, C.-S. (1985). Acta Cryst. C41, 1596-1598.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SUH, M. P., KANG, S. G. & CHUNG, T. M. (1990). Bull. Korean Chem. Soc. 11, 206–208.
- SUH, M. P., SHIN, W., KANG, S. G., LAH, M. S. & CHUNG, T. M. (1989). Inorg. Chem. 28, 1602–1605.
- THÖM, V. J., FOX, C. C., BOEYENS, J. C. A. & HANCOCK, R. D. (1984). J. Am. Chem. Soc. 106, 5947–5955.

Acta Cryst. (1991). C47, 747-750

Structure of *trans*-Dichlorotetrakis(dimethyl sulfoxide)rhodium(III) Tetrafluoroborate

BY MARIO CALLIGARIS, PAOLO FALESCHINI AND ENZO ALESSIO

Dipartimento di Scienze Chimiche, Università di Trieste, 34127 Trieste, Italy

(Received 10 June 1990; accepted 4 October 1990)

Abstract. (*OC*-6-13)-Dichlorobis(dimethyl sulfoxide-*O*)bis(dimethyl sulfoxide-*S*)rhodium(III) tetrafluoroborate, [RhCl₂(C₂H₆OS)₄]BF₄, $M_r = 573 \cdot 15$, triclinic, *P*T, $a = 9 \cdot 178$ (4), $b = 10 \cdot 459$ (3), c =11 · 194 (5) Å, $\alpha = 92 \cdot 71$ (2), $\beta = 96 \cdot 77$ (2), $\gamma =$ 91 · 43 (2)°, $V = 1065 \cdot 4$ (7) Å³, Z = 2, $D_x =$ 1 · 787 g cm⁻³, λ (Mo $K\alpha$) = 0 · 7107 Å, μ (Mo $K\alpha$) = 14 · 6 cm⁻¹, *F*(000) = 576, *T* = 294 K, *R* = 0 · 032, *wR* = 0.042 for 4017 unique observed reflections. The structure of the cation is characterized by a *trans*-Cl octahedral coordination around the metal atom. Two of the four dimethyl sulfoxide (dmso) ligands are O-bonded to the Rh atom, the others are S-bonded, with O-dmso *trans* to S-dmso. Average bond distances are: Rh-Cl, 2.327 (4); Rh-S, 2.259 (7); Rh-O, 2.0798 (8) Å.

0108-2701/91/040747-04\$03.00

© 1991 International Union of Crystallography

Table	1.	Final	frac	tional	coor	dina	tes a	nd .	equiva	lent
isotro	pic	thern	ial p	arame	ters (Ų)	with	thei	ir [°] e.s.d	.'s

					Rh-C11
	$B_{12} = (4/3)[a^2 B(1 + 1)]$	$) + b^2 R(2 2) + c^2$	$B(3,3) + ab(\cos \theta)$	$\alpha R(1,2)$	Rh-C12
	$\pm ac(co)$	(1,2) + bc(2,2) + bc(2,2	$P(2,3) = \frac{1}{2} 1$	<i>(</i>) <i>D</i> (1, <i>2</i>)	Rh—S1
	1 46(60	sp) $D(1,3) + bc(c$	(2,3)		RhS2
	x	v	z	B	Rh—O3
Rh	0.06482 (3)	0.28475 (2)	0.28097 (2)	2.541 (4)	Rh-O4
C11	0.0816 (1)	0.3406 (1)	0.08446 (8)	4.33 (2)	S101
C12	0.0462 (1)	0.24400 (9)	0.48146(7)	4.00 (2)	S1-C11
S1	-0.0301(1)	0.08847 (9)	0.21965 (9)	3.78 (2)	S1-C12
S2	0.30172 (9)	0.22592 (8)	0.30598 (8)	3.36 (2)	S2—O2
S3	0.23184 (9)	0.55732 (8)	0.28218 (7)	3.12 (1)	S2C21
S4	-0.1886 (1)	0.47480 (9)	0.22195 (9)	3.81 (2)	<u> </u>
Fl	-0.5378 (4)	0.6984 (4)	0.1534 (4)	9.0 (1)	CII-Rh-SI
F2	-0.4724 (5)	0.8675 (4)	0.2731 (3)	9.1 (1)	Cl1—Rh—S2
F3	-0.3304 (4)	0.7953 (5)	0.1388 (4)	10.4 (1)	CII—Rh—O
F4	-0.5283 (9)	0.8873 (5)	0.0802 (5)	20.3 (2)	CII—Rh—O
01	0.0755 (4)	-0.0118 (3)	0.2051 (4)	6.31 (8)	Cl2—Rh—Sl
O2	0.4030 (3)	0.3314 (3)	0.3525 (3)	5.17 (7)	Cl2—Rh—S2
03	0.1237 (3)	0.4720 (2)	0.3421 (2)	3.20 (4)	Cl2RhO.
04	-0.1528 (3)	0.3388 (2)	0.2637 (3)	4.07 (5)	Cl2—Rh—O
C11	<i>−</i> 0·1488 (6)	0.0931 (5)	0.0837 (4)	5.8 (1)	SI-RhS2
C12	-0.1554 (6)	0.0362 (5)	0.3176 (5)	6.5 (1)	SI-Rh-04
C21	0.3333 (5)	0.0971 (4)	0.4027 (4)	5.21 (9)	S2—Rh—O3
C22	0.3586 (6)	0.1598 (5)	0.1709 (4)	5.6 (1)	03
C31	0.1238 (5)	0.6834 (4)	0.2231 (4)	4.44 (8)	Rn-SI-01
C32	0.3280 (5)	0.6443 (4)	0.4089 (4)	4.54 (8)	Rh-SI-CI
C41	-0.3311 (6)	0·4473 (5)	0.1023 (4)	6.1 (1)	Kn-SI-CL
C42	-0.2907 (6)	0.5363 (4)	0.3349 (4)	5.2 (1)	
В	-0.4718 (6)	0.8167 (5)	0.1597 (5)	4.8 (1)	
					Kn-52-02

Rh—C11	2.3238 (9)	\$2—C22	1.773 (5)
Rh—C12	2.3293 (9)	S3O3	1.550 (3)
Rh—S1	2.2539 (9)	\$3—C31	1.776 (4)
Rh—S2	2.2638 (9)	\$3—C32	1.778 (4)
Rh—O3	2.080 (2)	S4—O4	1.549 (3)
Rh—O4	2.079 (3)	S4—C41	1.766 (5)
S101	1.462 (4)	S4—C42	1.767 (5)
\$1—C11	1.768 (5)	F1—B	1.359 (6)
S1—C12	1.774 (6)	F2B	1.353 (6)
S2—O2	1.461 (3)	F3—B	1.368 (7)
S2C21	1.776 (5)	F4—B	1.256 (8)
Cl1—Rh—S1	92.29 (4)	Rh—S2—C21	113.5 (2)
Cl1—Rh—S2	91.99 (4)	Rh—S2—C22	112.2 (2)
Cl1—Rh—O3	89.79 (7)	O2-S2-C21	107.7 (2)
Cll—Rh—O4	89.73 (9)	O2—S2—C22	108.8 (2)
Cl2—Rh—Sl	91.24 (4)	C21-S2-C22	101.1 (2)
Cl2—Rh—S2	89.56 (3)	O3—S3—C31	104.6 (2)
Cl2—Rh—O3	86-46 (7)	O3—S3—C32	101.9 (2)
Cl2—Rh—O4	88.70 (9)	C31—S3—C32	98.1 (2)
S1—RhS2	95.77 (3)	O4-S4-C41	103.8 (2)
\$1—Rh—O4	84.61 (7)	O4—S4—C42	102.6 (2)
S2—Rh—O3	91.66 (7)	C41—S4—C42	99.8 (2)
03Rh04	87.89 (9)	Rh	123.1 (1)
Rh—Si—Ol	116.3 (1)	Rh—O4—S4	118.4 (2)
Rh—S1—C11	111.3 (2)	F1—B—F2	108.0 (5)
Rh—S1—C12	110.6 (2)	F1BF3	104.8 (4)
01—S1—C11	108.3 (2)	F1—B—F4	112.7 (5)
01—S1—C12	108.8 (2)	F2—B—F3	109.4 (4)
C11—S1—C12	100.3 (2)	F2F4	113.3 (5)

112.8 (1)

Table 2. Bond distances (Å) and angles (°)

Introduction. In the course of a general study on halide–dimethyl sulfoxide (dmso) hexacoordinated ruthenium and rhodium complexes, acting as possible antitumor agents (Mestroni *et al.*, 1989), $[RhCl_2(dmso)_4][BF_4]$ was synthesized by treating $[RhCl_3(dmso)_3]$ (James & Morris, 1980) with the stoichiometric amount of AgBF₄ in a refluxing acetone/dimethyl sulfoxide (80:1) solution. Dissolution of the crude product in warm acetone and addition of small amounts of diethyl ether yielded crystals suitable for X-ray analysis.

The structure of the title compound could not be unambiguously obtained from NMR evidence (Barnes, Goggin & Goodfellow, 1979).

Experimental. Crystal dimensions approximately 0.7 $\times 0.4 \times 0.6$ mm. Weissenberg and precession photographs indicated crystals to be triclinic. Nonius CAD-4 diffractometer, graphite-monochromated Mo $K\alpha$ radiation. Lattice parameters refined by least-squares fit of 25 reflections in the range $15 < \theta$ < 21°. Intensity data measured by the $\omega/2\theta$ scan technique, ω -scan angle = $(1.05 + 0.35 \tan \theta)^{\circ}$; scan rate $8-24^{\circ}$ min⁻¹, max. $2\theta = 54^{\circ}$. Three standard reflections ($\overline{2}8\overline{4}$, $\overline{6}30$, $\overline{3}73$), monitored every 4000 s, showed no decay. Orientation matrix checked every 800 reflections. 5046 reflections collected ($3 \le \theta \le$ 27° ; $-11 \le h \le 11$, $-13 \le k \le 13$, $0 \le l \le 14$), 4017 judged significant $[I \ge 3 \cdot 0 \sigma(I)]$. $\sigma(F_{\alpha})$ based on counting statistics; empirical absorption correction applied using ψ scans of four reflections at $\theta > 15^{\circ}$ (correction factors in the range 0.915-1.000, average transmission factor 0.968); Lorentz and polarization corrections. Structure solved by the heavy-atom method. H atoms located on the basis of ideal bond lengths (C—H, 0.95 Å) and angles and not included in the least-squares refinement. Refinement using full-matrix least-squares method with anisotropic thermal factors for non-H atoms led to R = 0.032, wR = 0.042, S = 0.80, $(\Delta/\sigma)_{max} = 0.02$. Function minimized $\sum_i w_i (|F_o| - |F_c|)^2$, $w = 1/[1 + \sigma^2(F_o) + (0.025F_o)^2]$. Max. residual $\Delta \rho$ 0.77 e Å⁻³, around F4. The extinction parameter (g; Stout & Jensen, 1968) is $1.7 (4) \times 10^{-7}$. Atomic scattering factors, anomalous-dispersion terms and programs as in the Enraf–Nonius SDP (B. A. Frenz & Associates, Inc., 1985). All computations carried out on a MicroVAX 2000.

F3-B-F4

108.2 (6)

Discussion. Final fractional coordinates and equivalent isotropic thermal parameters of non-H atoms are given in Table 1 and bond lengths and angles in Table 2.* The structure of the cation is shown in Fig. 1. The difference Fourier maps and the isotropic thermal factors showed that the F atoms, especially F4, were disordered. Different disorder models of the BF_4 anion did not refine satisfactorily. Eventually,

^{*} Lists of structure factors, anisotropic thermal parameters and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53621 (20 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

the F atoms were located in an average position and refined anisotropically, allowing them to assume high thermal factors. The other structural parameters were not affected by the different disorder models.

The title cation has a distorted octahedral coordination around the Rh atom with two Cl atoms in *trans* positions. Two of the four dmso ligands are O-bonded in a *cis* arrangement, while the other two *cis*-coordinated dmso's are S-bonded. In agreement with the complex structure, the solid-state infrared spectrum shows four bands in the S=O stretching region, two for the S-bonded (1148 and 1135 cm⁻¹) and two for the O-bonded (916 and 905 cm⁻¹) dmso's (Barnes *et al.*, 1979). The corresponding Rh-O and Rh-S stretching bands fall at 520, 497 and 440, 427 cm⁻¹, respectively (Fadeev, Kukushkin & Khokhryakov, 1975).

The average Rh—Cl bond length of $2\cdot327$ (4) Å is close to the values found in other *trans* Cl—Rh^{III}— Cl groups: $2\cdot33$ (2) Å in [RhCl₃(dmso-*S*)(py)₂] (Colamarino & Orioli, 1976) and $2\cdot34$ (1) Å in [RhCl₃(dmso-*S*)₂(dmso-*O*)] (Sokol & Porai-Koshits, 1974). Similarly, the Rh—S, *trans* to dmso-*O*, bond distances [av. $2\cdot259$ (7) Å] are comparable, within experimental error, to $2\cdot231$ (7) Å found in [RhCl₃(dmso-*S*)₂(dmso-*O*)] (Sokol & Porai-Koshits, 1974).

As already observed (Alessio, Mestroni, Nardin, Attia, Calligaris, Sava & Zorzet, 1988; Annibale, Cattalini, Bertolasi, Ferretti, Gilli & Tobe, 1989; Bancroft, Cotton & Verbruggen, 1989) in dmso-S the S—O bond distance [av. 1·462 (1) Å] is markedly shorter than that of dmso-O [av. 1·550 (1) Å] owing to the considerable decrease of the double-bond character of the S—O bond upon coordination *via* oxygen.

Fig. 1. ORTEP (Johnson, 1965) drawing and numbering scheme for non-H atoms of *trans*-[RhCl₂(dmso)₄]⁺.

The compression action of the lone pair of the tetrahedral S atom on the bonding pairs in dmso-O justifies the narrowing of the O—S—C bond angles passing from S-bonded [av. 108·3 (6)°] to O-bonded [av. 103 (1)°] dmso. The narrowing of the C—S—C bond angles, from dmso-S to dmso-O, is much less marked, probably because of the steric hindrance of the methyl H atoms.

The ability of sulfoxides to coordinate via oxygen or via sulfur is determined by the interplay between electronic and steric effects. Recent available data (Alessio, Milani, Mestroni, Calligaris, Faleschini & Attia, 1990) indicate that in Ru^{II} complexes ruthenium prefers coordination via sulfur rather than via oxygen. This may be rationalized in terms of the HSAB (Hard Soft Acid Base) principle (Pearson, 1990). In fact, Ru^{II}, which may be considered a 'soft' acid, is expected to prefer coordination to a 'soft' base such as sulfur, rather than to a 'hard' base like oxygen. In any case, this type of bonding is controlled by the ligand steric hindrance and the π back-bonding competition between sulfur trans ligands. In fact, in trans-[RuCl₂(dmso)₄] all the dmso molecules are Sbonded but the complex is thermodynamically unstable because of the π back-bonding competition between trans sulfur ligands and steric interactions, arising from the overcrowding in the equatorial plane (Alessio et al., 1988). On the contrary, the isoelectronic title complex. *trans*- $[RhCl_2(dmso)_4]^+$, is stable, having two dmso's S-bonded and the other two O-bonded. The stability of this complex may be explained considering the 'borderline' acid character of Rh^{III} (Pearson, 1990), made 'harder' by the net positive charge of the metal complex, for which the S-bonding does not prevail over the O-bonding. Furthermore, the O-bonding reduces the steric strain energy and the π back-bonding competition between trans ligands, even if such an effect should be less pronounced than in the case of metals with lower oxidation states, because of the lower electron density on the metal center.

We thank the MURST (Rome) for financial support.

References

- ALESSIO, E., MESTRONI, G., NARDIN, G., ATTIA, W. M., CALLIGARIS, M., SAVA, G. & ZORZET, S. (1988). *Inorg. Chem.* 27, 4099-4106.
- ALESSIO, E., MILANI, B., MESTRONI, G., CALLIGARIS, M., FALESCHINI, P. & ATTIA, W. M. (1990). *Inorg. Chim. Acta.* In the press.
- ANNIBALE, G., CATTALINI, L., BERTOLASI, V., FERRETTI, V., GILLI, G. & TOBE, M. L. (1989). J. Chem. Soc. Dalton Trans. pp. 1265–1271.
- B. A. FRENZ & ASSOCIATES, INC. (1985). SDP Structure Determination Package. College Station, Texas, USA.
- BANCROFT, D. P., COTTON, F. A. & VERBRUGGEN, M. (1989). Acta Cryst. C45, 1289–1292.

BARNES, J. R., GOGGIN, P. L. & GOODFELLOW, R. J. (1979). J. Chem. Res. (M), pp. 1610-1656.

- COLAMARINO, P. & ORIOLI, P. (1976). J. Chem. Soc. Dalton Trans. pp. 845-848.
- FADEEV, YU. V., KUKUSHKIN, YU. N. & KHOKHRYAKOV, K. A. (1975). Russ. J. Inorg. Chem. 20, 1519-1521.
- JAMES, B. R. & MORRIS, R. H. (1980). Can. J. Chem. 58, 399-408.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- MESTRONI, G., ALESSIO, E., CALLIGARIS, M., ATTIA, W. M., QUADRIFOGLIO, F., CAUCI, S., SAVA, G., ZORZET, S., PACOR, S., Monti-Bragadin, C., Tamaro, M. & Dolzani, L. (1989). Prog. Clin. Biochem. 10, 71-87.
- PEARSON, R. G. (1990). Coord. Chem. Rev. 100, 403-425.
- SOKOL, V. I. & PORAI-KOSHITS, M. A. (1974). Koord. Khim. 1, 577-583.
- STOUT, G. & JENSEN, L. H. (1968). X-ray Structure Determination. London: Macmillan.

Acta Cryst. (1991). C47, 750–752

New Precursors in the Chemistry of IVB Transition Metal Alkoxides. III. Synthesis and Structure of $Zr_2Co_2(\mu_3-OC_3H_7)_2(\mu_2-OC_3H_7)_4(OC_3H_7)_4(acetylacetone)_2$

BY RAIMUND SCHMID, ALAIN MOSSET AND JEAN GALY CEMES-LOE, BP 4347, 31055 Toulouse CEDEX, France

(Received 22 June 1990; accepted 10 October 1990)

Abstract. Bis(acetylacetonato)-bis(μ_3 -propanolato)- $1:2:4\kappa O; 2:3:4\kappa O'$ -tetrakis(μ_2 -propanolato)- $1:2\kappa O:$ -1:4- κO ;2:3 κO ;3:4 κO -tetrakis(propanolato)-2 $\kappa^2 O$,- $4\kappa^2 O$ -dicobaltdizirconium, $Zr_2Co_2(OC_3H_7)_{10}$ - $(O_2C_5H_8)_2$, $M_r = 1091.43$, monoclinic, $P2_1/n$, a = $(2_2 + 3_{18})_{25}$, M_r 1051 + 3, molecular, $12_1 m$, u = 12.753 (3), b = 16.500 (3), c = 13.485 (2) Å, $\beta = 99.27$ (2)°, V = 2800.6 Å³, Z = 2, $D_x = 1.29$ Mg m⁻³, λ (Mo $K\alpha$) = 0.71069 Å, $\mu = 4.88$ mm⁻¹, F(000) = 1124, room temperature, R = 0.057 for 2798 independent $[I > 3\sigma(I)]$ reflections. The centrosymmetric molecule is tetranuclear. The Zr atom has a very distorted octahedral environment and the Co atom a distorted trigonal bipyramidal surrounding. The alkoxy groups show three different coordination schemes.

Introduction. The hydrolysis of bimetallic alkoxides allows the synthesis of very homogeneous mixed metal oxides via the sol-gel process (Dislich, 1988). However, these starting products are frequently extremely unstable. Recent studies (Schmid, Mosset & Galy, 1990) from this laboratory show that they can be stabilized by a chelating ligand such as acetylacetone (Hacac).

The reaction of zirconium n-propanolate on cobalt(II) acetylacetonate yields a new hexanuclear precursor: $Zr_2Co_4(\mu_6-O)(\mu_2-OC_3H_7)_8(OC_3H_7)_2$ (acac)₄ (Schmid, Mosset & Galy, 1991). We report now the X-ray structure of the second product in this reaction: $Zr_2Co_2(\mu_3 - OC_3H_7)_2(\mu_2 - OC_3H_7)_4(OC_3H_7)_4$ - $(acac)_{2}$.

Experimental. 0.0082 mol of cobalt(II) acetylacetonate is suspended in 100 ml n-propanol, dried on

sodium and distilled under dry nitrogen. After the addition of 0.0328 mol of zirconium *n*-propanolate. the solution is stirred and refluxed for 24 h under nitrogen. This solution is then concentrated until one third of the solvent is removed and rapidly cooled in the refrigerator. Violet single crystals grow slowly; $0.25 \times 0.35 \times 0.15$ mm; Enraf-Nonius CAD-4 difgraphite-monochromatized Mo $K\alpha$ fractometer; radiation; 25 reflections ($8 < \theta < 15^{\circ}$) for refined unit-cell parameters; $\theta/2\theta$ scan mode; scan width 1.2°; independent reflections with $3 < \theta < 19^\circ$; range of hkl: 0 < h < 11, 0 < k < 15, -12 < l < 12; no intensity deterioration of the three standard reflections; Lp corrections, no absorption correction; 2798 independent reflections with $I > 3\sigma(I)$; metal positions from Patterson function, other non-H atoms from difference-Fourier syntheses; anisotropic fullmatrix least-squares refinement on F; 262 refined parameters; unit weights; R = 0.057; wR = 0.055; $(\Delta/\sigma)_{\text{max}} = 0.1$; final $\Delta \rho$ values < 0.6 e Å⁻³. Calculations performed with SHELX76 (Sheldrick, 1976); scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV, pp. 99-101, 149-150).

Discussion. Final atomic coordinates for the non-H atoms are listed in Table 1* and selected bond distances and angles in Table 2.

© 1991 International Union of Crystallography

^{*} Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53643 (15 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.